Second European Biobed Workshop

Pesticides degradation in organic substrates used in biobeds

Elga Monaci, Laura Coppola, Alessandra Cardinali, Costantino Vischetti

Polytechnical University of Marche Via Brecce Bianche 60131 Ancona

Italy

CleanRegion

BIOBED

ENVIRONMENTAL ISSUES

TECHNOLOGY

REGULATORY PROCEDURES

EFFECTIVENESS IN ADSORBING PESTICIDES (cleaning water)

EFFECTIVENESS IN BIODEGRADING PESTICIDES (exhausted biofilter free of pesticides and metabolites)

CleanRegion

EFFECTIVENESS IN BIODEGRADING PESTICIDES

1. Individuating organic residues performing high pesticides biodegradation

Pesticide degradation in several different organic mixtures

Effect of initial concentration, coapplication and repeated application of pesticides

2. Individuating modifications induced by pesticides on the metabolic activity of the biofilter

CleanRegion

Ghent 11-12 December 2007

Biochemical Parameters

LAB CONDITIONS

Pesticides Analysis

Organic mixtures Biochemical Properties

DEGRADATION KINETICS

Pesticides half-life

MINERALIZATION

% of pesticides completely degraded

(Collaboration with Microbiology Department of SLU) 2 mm; 60% WHC; in the dark at 20°C Addition of cold + labelled pesticides Untreated organic mixtures used as control

BASAL RESPIRATION

MICROBIAL BIOMASS CARBON CONTENT

METABOLIC QUOTIENT

Influence of pesticides on the metabolic activity of the microbial community

SPECIFIC ENZYMATIC SYSTEM

Biochemical process involved

(Collaboration with Microbiology Department of SLU)

CleanRegion

hosphate 69	925	1.4	50	Moderately persistent
hosphate 69	925	1.4	50	Moderately persistent
ylurea 1 niazinone <u>s</u> ylurea 1	39 51 41	70.2 570 74	12 13 45	No persistent No persistent Moderately persistent
/lamide 1 nzole 18	65 802	7100 6.6	42 354	Moderately persistent Very persistent
	ylurea 1 niazinone 1 ylurea 1 /lamide 1 azole 1 oilurin 4	ylurea 139 niazinone 51 ylurea 141 /lamide 165 azole 1802 pilurin 423	ylurea 139 70.2 niazinone 51 570 ylurea 141 74 vlamide 165 7100 azole 1802 6.6 oilurin 423 6.7	ylurea 139 70.2 12 niazinone 51 570 13 nylurea 141 74 45 /azole 165 7100 42 azole 1802 6.6 354 oilurin 423 6.7 70

FOOTPRINT pesticides database: http://www.herts.ac.uk/aeru/footprint/it/Reports/54.htm

		Composition	С	N		рН
TESTED ORGANIC SUSTRATES		(% v/v)	(%)	(%)		
	U	100	30.2	2.40	13	7.97
Urban compost + citrus peel	U+C	87.5:12.5	32.4	2.60	12	6.73
Urban compost + vine branches straw	U+S	50:50	39.4	1.96	20	7.44
Garden compost	G	100	32.8	2.34	14	8.18
Garden compost + citrus peel	G+C	87.5:12.5	31.8	2.26	14	6.41
Garden compos+ vine branches straw	G+S	50:50	32.3	1.43	23	6.87
Vine branches straw + soil + peat	B1	50:25:25	18	0.35	51	5.66
Vine branches straw + soil + peat	B2	25:50:25	7.3	0.23	32	5.94
Vine branches straw + soil + peat	B3	12.5:625:25	3.8	0.18	21	6
Vine branches + garden-urban compost						
+ soil	IB	40:40:20	26.6	2	13.3	7.6
Urban-garden compost						
(3 months age)	C3M	100	30	2.4	12.6	7.8
(12 months age)	C12M	100	29	3.1	9.3	8.4

CleanRegion

Results: pesticides degradation

(DT50 & % of mineralized)

		*CH 100ppm DT50 %		*TCP **IPU 100pp % DT50 %		100ppm %	BEN 100ppm DT50 %	
Organic substrates				accumulated				
urban compost	U	46	5	42	76	2	47	
urban compost + citrus peel	U+C	44	10	42	50	2		
urban compost + vine branches straw	U+VBS	52	20	55	25	3	81	
garden compost	G	39	30	30	35	5	22	
garden compost + citrus peel	G+C	43	17	36	33	5		
garden compost + vine branches straw	G+VBS	37	28	14	20	5	15	
vine branches straw + soil + peat	B1	53	16	12	68	7	54	4
soil + vine branches straw + peat	B2	47	15	28	51	11	57	4
soil + vine branches straw + peat	B3	51	14	25	61	11	55	4

Preliminary results		EPX 100ppm DT50	AZX 100ppm DT50	CHT 100ppm DT50
Urban-garden compost (3 months age)	СЗМ	315	57	182
Urban-garden compost (12 months age)	C12M	433	433	277

Lignino-cellulosic substrates and compost at 3 months

seem to better degrade tested pesticides

An experimental evidence of lignino-lytic enzimatic activity (manganese peroxidase MnP)

Biomix: vine-branches straw (40%) garden-urban 3M compost (40%) soil (20%)

% Pesticides Residues versus % Migrobial Biomass Carbon Content (MBC, it is copridered 100% the MBC value found for the untreated biomix)

- Effect of CH initial concetration on CH DT50

- Initial toxic effect of CH and M on MBC. In CH treatments MBC gradually recovered, while in M treatments gradually decreased untill about 50% of the initial value

CleanRegion

- Synergic effect of the co-application versus M degradation

- Toxic effect of CH and M against two different groups of microorganisms of the biomix microbial community

- MBC started to recover when CH residue were about 50% of the initial concentration

Metabolic quotient qCO₂

Repiration activty (CO₂ evolved) per unit of MBC

 $(qCO_2 \text{ of the treated biomix was compared to qCO_2 of the untreated biomix})$

Metabolic stress (hypothesis: shift in the microbial community towards tolerant/degrading microorganisms)

- single application 20 days (CH)
- co-application 40 days

Conclusions

- Lignino-cellulosic substrates showed a good pesticide degradation
- The aging of compost generally reduces degradative efficiency (especially against fungicides)
- Microbial biomass of the biomix has to be varied enough to allow the selection towards tolerant/degrading microrganisms

Future Research

-Design a biofilter with the following characteristics:

- highlydyenficlegradationspathwaye indifferentoorgagic gubstrates hodididuaten igh concestigides transformation products (HPLC, GC, GC-MS)

-free from pesticides and metabolites and from crops pathogen microflora when exhetisted of the population dynamics of fungal and bacteria species involved in -Estpesticides degradation (PGGE, genus specifier Parela Timo Prative sand) elimatic conditions biochemical finger printing (PhenePlate, MBC, basal respiration metabolic quotient) of the microbial community to evidence specific -Te enzimatic systems involved in pesticides biodegradation.

-Testing the possibility to download pesticides directly on a farm made composter

CleanRegion

- Coppola L., Castillo M.dP., Monaci E., Vschetti C. 2007. Adaptation of the Biobed composition for chloryrifos degradation to Southern Europe conditions. J. Agr. Food Ch., 55, 396-401

- Vischetti C., Coppola L., Monaci E., Cardinali A., Castillo .dP. 2007. Microbial impact of the pesticide chlorpyrifos on Swedish and Italian bioeds. Agron. Sustain. Dev., DOI: 10.1051/agro20070

- Monaci E., Coppola L., Vischetti C., Castillo MdP. 2007. Biodegradative Potential of Composts with and without active carbon amendements. In Environmental Fate and Ecological Effects of Pesticides. (A.A.M Del Re, E. Capri, G. Fragoulis and M Trevisan, Eds) Proceedings of XIII Symposium of Pesticides Energistry (3-6 Scp) ember Fragenzi Pitaly

