

Effect of Novel Biofilter Material on Microbial Respiration

Santanu Mukherjee, Lutz Weihermüller, Wolfgang Tappe, Peter Burauel and Harry Vereecken

glied der Helmholtz-Gemeinsc

Outlook

Introduction and Motivation

- Materials and Methods
 - Biochars
 - Digestate
 - Pesticides
- Experimental Set up
- > Results
- Preliminary Conclusion and Hypothesis

Pesticides in water: sources of contamination

Surface flow Seepage

Leaching

Washings Faulty equipment **Spillages**

"Pesticide pollution" appears twice in the top ten of The World's Worst Toxic Pollution Problems Report 2011 by the Blacksmith Institute.

(http://www.worstpolluted.org/)

Point sources of pollution contributes approximately 40-90 % of surface and ground water contamination. (De Wilde et. al., 2009)

Mitglied der Helmholtz-Gemeinschaft

Biobeds 2011

Types of Biobeds in Europe

Biobeds in the UK

Biomassbed in Italy

Biobac in France

Biofilter in Belgium

Mixture: Straw to Peat to Soil (2:1:1)

Substitute for straw: Coconut Chips, Willow Chips etc.

Disadvantages: Chances of preferential flow

(Castillo et. al., 2009)

Mitglied der Helmholtz-Gemeinschaft

Some useful informations about Sorbents:

Materials	Soil 1	Soil 2	BC400	BC 800	Digestate
Source /place and texture	Kaldenkirchen (loamy sand)	Merzenhausen (silty loam)	Woodchips§	Woodchips§§	Maize-silage, Chicken manure and Beef waste
рН	5.7*	7.0*	n.d	n.d	n.d
CEC(cmol _c kg ⁻¹)	7.8*	11.4*	n.d	n.d	n.d
C _{oc} (%)	1.07*	1.24*	75.9§	74.4§§	40
Н	_	_	1.64§	0.5§§	_
O	_	Ι	5.05§	10.6§§	_
H/C Atomic Ratio	_	_	0.26	0.08	_
O/C Atomic Ratio	_	1	0.05	0.11	_
Surface Area (N ₂) (m ² /g)	n.d	n.d	231	225	3.09
Surface Area (CO ₂) (m ² /g)	n.d	n.d	634	625	37.90
Micropore volume (cc/g)	_	1	0.22	0.21	0.01

^{*(}Kasteel et. al., 2010), §(Carbon Terra, 2011) and §§(Pyreg, 2011)

Reasons for undertaking the proposed project

To build up and investigate the efficiency of a "novel" biofilter material with following objectives:

- 1. Substitution of straw with digestate
- 2. Substitution of peat with biochar (cost.european-biochar.org)

- Influence of char and digestate on degradation, sorption and desorption of pesticides?
- > Effects of the proposed organic amendments on the **retardation** of pesticides?
- > How does the **novel biofilter material** work under realistic conditions?

Mitglied der Helmholtz-Gemeinschaft

Janus faced nature of biochar

(www.treehugger.com)

(www.cec.org)

Digestate: Solid material remaining after the anaerobic digestion of a **biodegradable** feedstock.

Selected characteristics of the Straw and Digestate:

Approx. Elemental Composition On Dry Matter Basis (g/kg)	* Wheat Straw	*Solid Digestate
Organic C	429	404
Total N	5.6	93
Lignin	177	200
C/N	76.6	4.34

*(Tambone et. al., 2009)

Fiber: Solid fraction of digestate with low nutrients

- used as soil conditioner

itglied der Helmholtz-Gemeinscha

Sorbates:

Supplied Pesticides:

All experiments will be conducted with three radiolabelled (14C) compounds.

Active Substance	Chemical Name	Water Solubility (mg/L) at 20°C	Log K _{OW} at 21°C	DT ₅₀ in soil(day)
Bentazone*	3-isopropyl-1H-2,1,3-benzothiadiazin- 4(3H)one2,2-dioxide	570	0.77	13
Pyrimethanil	N-(4,6-dimethylpyrimidin-2-yl)aniline	121	2.84	55
Boscalid *	2-chloro-N-(4'-chlorobiphenyl-2- yl)nicotinamide	4.6	2.96	200

(http://sitem.herts.ac.uk/aeru/footprint/en/index.htm)

Our Proposed Approach:

JÜLICH FORSCHUNGSZENTRUM

- Incubation experiment (ongoing ..)
- Degradation study (soils from incubation)
- Batch sorption-desorption study (soils from incubation)
- Unsaturated column set up (soils from incubation)
- ☐ Construction of **pilot biofilter system**

Respirometer system

Mitglied der Helmholtz-Gemeinschaft

Preliminary Conclusion:

 \square KK soil showed 35 % less CO₂-C compared to MER soil without amendment.

☐ Addition of biochar to soils increase CO₂-C only slightly. (graph not shown)

- \square KK soil showed 12 % less CO_2 -C release for 30% digestate compared to MER soil.
- \square CO₂-C evolved increased with increasing C-input (digestate). In mixtures (with char) pronounced negative priming effects occured (Zimmerman et. al., 2011).

For both soils and digestate mixtures (5 % w/w) addition of biochar (1 and 5 % w/w) reduces CO_2 -C release dramatically in a range between 31 % (HB) to 87 % (LB) for MER soil and 47 % (HB) to 92 % (LB) for KK soil.

Mitglied der Helmholtz-Gemeinscha

⁄litglied der Helmholtz-Gemeins

Mitglied der Helmholtz-Gemeinscha

Proposed Hypothesis:

- \square Chemisorption of respired CO₂ to biochar surface (Thies et. al., 2009).
- \square O₂ consumption by nitrifying bacteria (Dilly, 2001).
- \square Precipitation of CO₂ as mineral carbonates (Kuzyakov, 2006).
- \square Conversion of gaseous CO_2 -C into chemoautotrophic microbial biomass (Hart et. al., 2013).
- ☐ At a certain threshold, compounds from biochar could potentially become microbiologically toxic (Clough et. al., 2010).

Which of these scenarios is the driving mechanism for reduced CO₂ release from biochar and digestate amended soils is yet to be resolved.

Future Tasks derived from incubation study:

☐ Analyze the kinetics based on (using double pool model)

☐ Writing publication

lacksquare Identify the most suitable biomixture for investigating the fundamental processes i.e sorption-desorption, degradation and transport behaviour of toxicants through biofilter materials.

Tasks	Year 1		Year 2			Year 3						
	1	2	3	4	1	2	3	4	1	2	3	4
Arrangement of amendment materiales, radiolabelled herbicides and Incubation experiment												
Degradation study of radiolabelled pesticides and batch sorption- desorption experiment												
Set up of an unsaturated column system to study the leaching behaviour of pesticides with Bras a conservative tracer and application of suitable model to validate the lab results												
Installation of pilot biofilter system to study the leaching & degradation behaviour of radiolabelled herbicides												
Writing of papers/PhD thesis												

A LOT OF KNOWN AND UNKNOWN IS UNKNOWN!

