

Elasto-Plastic Analysis of an Offshore Construction

Made by

Marianne Gudnor

Philippe Sicabaig

Karolis Matulevicius

Finite Element Method Final Project 2009

General characteristics		
Class and type:	Semi-submersible crane vessel	
Displacement:	172,000 <u>t</u> (heavy lift)	
Length:	198 m (overall)	
Beam:	87 m	
Height:	43.5 m (keel to deck)	
Draft:	10.5 metres (34 ft) (transit) 18.0 metres (59 ft) (survival) 27.5 metres (90 ft) (heavy lift)	
Installed power:	70,000 kW	A State A State
Propulsion:	12 thrusters	
Speed:	9.5 knots (18 km/h)	
Crew:	Up to 700 persons	

Analyzed elements

D = 1.8m

h = 1m

b = 0.08m

We calculated also the thickness of the weld.

(IPEarea+Weldarea)/230=52,8mm

Tension - Compression

Because of the grid in Comsol, we had to make an approximation in the drawing.

 $I_{x} = \frac{\pi (d_{o}^{4} - d_{i}^{4})}{64}$

₩

$$I_{x} = \frac{\pi (180^{4} - 164^{4})}{64}$$

$$I_{x} = 1600 \cdot 10^{4} [cm^{4}]$$

$$I_{x} = \frac{bh^{3}}{12}$$

$$h = (12 \cdot 160 \cdot 10^{4})^{\frac{1}{4}}$$

$$h = 117.7 [cm]$$

First calculation with a moment involved by two horizontal forces

Plastification starts for a bending moment of 53,64 kN.m.

It starts at the connection between the tube and the IPE profile.

The structure totally plastifies in the middle of the beam.

Second calculation with a moment involved by a vertical force

The maximum moment before the breaking is 149 kN.m.

Plastification starts for a bending moment of 64,4 kN.m.

It starts at the connection between the tube and the IPE profile.

The structure totally plastifies at the level of the joint.

Thank you for your attention!

