

Effectiveness of biobed bioremediation systems using vermicompost from olive-oil waste to remove emerging contaminants from wastewater Delgado-Moreno L., Nogales R. and Romero E.* E-mail: esperanza.romero@eez.csic.es

Department de Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC),

c/ Profesor Albareda 1, 18008-Granada, Spain.

Study financed by MINECO and FEDER funds Project CTM2013-44271-R

Introduction

Growing awareness of the impact that everyday activities have on the environment

Advances in measurement techniques

New pollutants in recent years that affect the quality of water.

Emerging Contaminants (ECs)

Pharmaceuticals, cyanotoxins, personal care products, nanoparticles, flame retardants, etc.

- Concentration and persistence in the environment

Unknown - Effects

- Permisible level (no regulatory criteria for environmental and human risk)

Solutions

- Ozonization
- Photodegradation
- Filtration Membranes
- Active carbon filtration
- Biobed Bioremediation systems (BBSs)

Expensive techniques, require maintenance support

A simple, versatile, low-cost technique, easy to install

In Spain: peat is a scarce natural resource

- Olive-oil Producción: 1,781,500 Tn 2013/2014
- 1760 extraction plants (818 in Andalusian region)
- Abundant generation of organic waste and byproducts

Objective

To determine the adsorption and degradation potential for three ECs by biomixtures composed of vermicompost from agroindustrial waste as a peat substitute, and olive pruning as a straw substitute, to select the most appropriate biomixture in BBSs for wastewater purification.

Material and methods

eez

Wet olive cake or "Alperujo" and Vermicompost of wet olive cake

Emerging contaminants (ECs)

Triclosan
(TRI)Is a preservative in cosmetic products.
It is currently regulated in Annex VI,(pKa =8,14)with a maximum concentration of 0.3%.

Ibuprofen
(IBU)Is a nonsteroidal anti-inflammatory
agent with analgesic and antipyretic
properties used in treatment of
rheumatism and arthritis

Diclofenac (DICLO) (pKa = 4,0) Is a non-steroidal anti-inflammatory agent (NSAID) with antipyretic and analgesic properties.

Standard solutions at 1 g L⁻¹ in acetone

Adsorption studies

Incubation Experiments

EC standard solutions

Application on quartz sand of <2mm particle size

1g

Conc. 20 µg g⁻¹ Incubation at 20°C, 75% FC

Table 1. Physicochemical properties of the agricultural soil and biomixtures studied

Lignin/Celullose/Hemicellulose

The topsoil (S) is a silt clay loam (34% clay, 56% silt and 10% sand) with 43% Ca CO₃

SVL: Soil + Vermicompost of alperujo + olive pruning

SVS: Soil + Vermicompost of alperujo + Straw

SPS: Soil + Peat+ Straw

<u>RESULTS</u>: Adsorption of the ECs by the biomixtures

Freundlich equation $(X = K_f \times C_e^{1/n})$

Table 2. Freundlich adsorption parameters and determination coefficients (R²) for diclofenac, ibuprofeno and triclosan in the soil and in the biomixtures

	DIC		C	IBU	PROFEN	I	TRICLOSAN			
_	Kf ±ES	1/n±ES	R^2	Kf ±ES	1/n±ES	R ²	Kf ± E S	1/n±ES	R ²	
S	3.3±0.5	1.0±0.1	1.00	1.1±0.2	1.0±0.1	0.99	160.5±9.0	0.9±0.1	0.99	
SVL	14.7±0.6	0.9±0.0	0.92	2.5±0.3	1.1±0.1	1.00	2416.6±802.3	1.2±0.2	0.98	
SVS	8.3±2.4	1.2±0.1	0.99	1.6±0.3	1.2±0.1	1.00	1698.4±489.1	1.5±0.3	0.98	
SPS	16.5±2.1	1.0±0.1	1.00	3.8±0.9	1.0±0.1	0.99	1022.8±83.3	0.8±0.1	1.00	

- Kf (S) < Kf (Biomixtures SVL, SVS, SPS)
- The pruning waste used as a texturizing agent was more effective in the sorption of the ECs than straw as shown by the Kf values
- The novel biomixtures SVL and SVS have greater retention capacity for triclosan than SPS. However, this was not the case for diclofenac and ibuprofen.

Table 2. Parametrers from the first – order dissipation kinetic ($C = C_0 \times e^{-kt}$)

Biomixture	DICLOFENAC			IBUPROFEN				TRICLOSAN				
	Со	Κ	R ²	Ln2/K	Со	Κ	R ²	Ln2/K	Со	Κ	R ²	Ln2/K
S	100.6	0.224	0.968	3.1	107.1	0.167	0.948	4.1	112.5	0.041	0.995	16.9
SVL	111.7	0.07	0.987	9.9					101.2	0.037	0.916	18.7
SVS	119.1	0.149	0.986	4.6					90.66	0.024	0.984	28.9
SPS	78.98	0.042	0.971	16.5					110.7	0.032	0.99	21.7

Conclusions

- 1. The biomixtures from SVS and SVL vermicomposts have greater retention capacity than Soil and SPS which may be due to their higher lignin/ cell. / hemicell. content.
- 2. The fastest degradation of the ECs occurred in Soil which can be attributed to its lower retention capacity with respect to the biomixtures.
- **3.** The degradation potential of the biomixtures is related to the type of EC involved.
- **4.** Ibuprofen was rapidly degraded in all the biomixtures, with a half-life of < 1 day.
- 5. The degradation of Diclofenac was faster in SVS and SVL than in SPS.
- 6. Triclosan was rapidly dissipated in the three biomixtures SVL, SVS and SPS, with a half-life of < 1 month.

